
Minor edits to Webwork problems

It is often required to update or correct minor errors in previously used Webwork problems. This will give a couple of examples to show how this can be done by instructors or TAs who use Webwork and have professor permissions.

Get to the Webwork Hmwk Sets Editor page either via Moodle or direct access if you the instructor. The page should looks like

In the problem sets list, click (or right click and select open in new tab) on the number in the Edit Problems column of the Problem set you wish to edit. In this case, ece514_hw05_fall2020

	ECE514 HW 13 geb fall2019 🖋	11	1/44	No	11/25/2019 at 07:30pm	12/06/2019 at 04:00pm	01/01/2021 at 01:42pm
						•	
	ECE514 HW 01 geb fall2020 🖋	10	1/44	No	08/12/2020 at 09:00am	08/18/2020 at 11:59pm	08/20/2020 at 01:00am
	ece514 hw01 fall2020 🖋	10	41/44	Yes	08/12/2020 at 09:00am	08/25/2020 at 11:59pm	08/25/2020 at 11:59pm
	ece514 hw02 fall2020 🖋	10	41/44	Yes	08/18/2020 at 11:30am	08/25/2020 at 11:59pm	08/26/2020 at 11:59pm
	MAAtutorial fall2020 🖋	16	41/44	Yes	08/10/2020 at 06:00am	08/31/2020 at 06:00am	01/01/2021 at 01:42pm
	Orientation fall2020 🖋	15	41/44	Yes	08/10/2020 at 07:55am	08/31/2020 at 07:55am	01/01/2021 at 01:42pm
	ece514 hw03 fall2020 🖋	9	44/44	Yes	08/20/2020 at 03:30pm	09/03/2020 at 11:59pm	09/04/2020 at 11:59pm
	ece514 hw04 fall2020 🖋	7	44/44	Yes	08/31/2020 at 08:30am	09/15/2020 at 11:59pm	09/16/2020 at 10:59pm
>□	ece514 hw05 fall2020 🖋	\bigcirc	2/44	No	09/04/2020 at 11:14am	09/22/2020 at 11:57pm	09/23/2020 at 11:59pm
	Webwork practice 1 🖋	5	1/44	No	11/15/2021 at 09:07am	11/22/2021 at 09:07am	11/22/2021 at 09:07am
	Probability problems 🖋	25	1/44	No	07/06/2024 at 09:39pm	07/13/2024 at 09:39pm	07/13/2024 at 09:39pm
	joel test 🖋	38	1/44	No	04/02/2022 at 11:22am	12/31/2025 at 11:22am	12/31/2025 at 11:22am
	Probability 514 🖋	0	1/44	No	04/22/2026 at 09:39pm	04/29/2026 at 09:39pm	05/01/2026 at 09:39pm

Please select action to be performed.

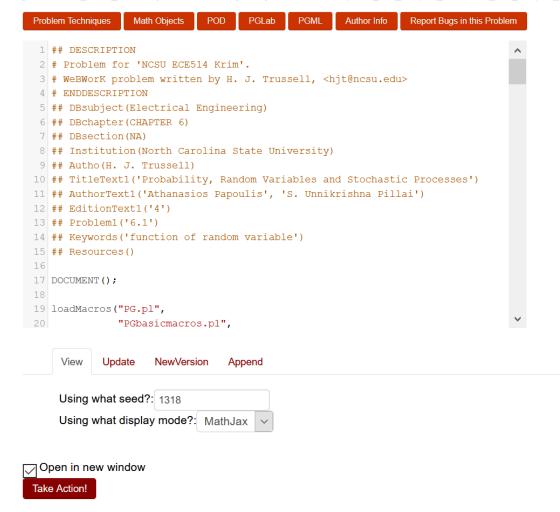
This takes you to the details for the problem set page.

I recommend rendering all the problems so you can see the actual problems in the set, not just the source file name. In any case, the next step to go to the problem editor. In the problem of interest, click on the "edit" icon (again, I prefer to use right click and select open in new tab)

2 1	Weight	16 10	Source File local/ECE514/Papoulis_4ed_Chapter_6/Papoulis_4ec (16 points) local/ECE514/Papoulis_4ed_Chapter_6/Papoulis_4ed_Chapter_6_6.1.pg x and y are independent and identically distributed (i.i.d) random variables with common p.d.f $f_x(x) = e^{-x}U(x)$ and $f_y(y) = e^{-y}U(y)$. Find the p.d.f of the random variable <i>z</i> , if: a) $z = x + y$, $f_z(z) = u(z) + u(z) + $					
Delete it? Mark Correct?	Max attempts 1							
			b) $z = x - y$, $f_z(z) =$	for $-\infty \leq$	$\leq z \leq \infty$ help (nu	imbers)		
			c) $z = \frac{x}{v}, f_z(z) =$	U(z) help (numbe	rs)			
			d) $z = \min(x, y), f_z(z) =$	U(z) h	elp (numbers)			
			e) $z = max(x, y), f_z(z) =$	U(z) h	elp (numbers)			
			f) $z = \frac{\min(x,y)}{\max(x,y)}$, $f_z(z) =$	for	$\leq z \leq$	help (numbers)		
			Solution:					

In this case, we want to edit the solution. Clicking on the "Solution:" link, expands the solution.

2 🕽	Weight 16	Source File local/ECE514/Papoulis_4ed_Chapter_6/Papoulis_4ec
	Max attempts 10	
Delete it?		(16 points) local/ECE514/Papoulis_4ed_Chapter_6/Papoulis_4ed_Chapter_6_6.1.pg x and y are independent and identically distributed (i.i.d) random variables with common p.d.f $f_x(x) = e^{-x}U(x)$ and $f_y(y) = e^{-y}U(y)$. Find the p.d.f of the random variable z , if:
		a) $z = x + y$, $f_z(z) = $ U(z) help (numbers)
		b) $z = x - y, f_z(z) =$ for $-\infty \le z \le \infty$ help (numbers)
		c) $z = \frac{x}{y}, f_z(z) =$ U(z) help (numbers)
		d) $z = min(x, y), f_z(z) =$ U(z) help (numbers)
		e) $z = max(x, y), f_z(z) =$ U(z) help (numbers)
		f) $z = \frac{mm(z,y)}{max(x,y)}, f_z(z) =$ for $\leq z \leq$ help (numbers)
		Solution:
		(Instructor solution preview: show the student solution after due date.)
		SOLUTION
		a) Define $z=x+y$. We know the pdf of the sum of two random variables is the convoluton of the pdfs of
		the random variables: $f_z(z) = \int_{-\infty}^{\infty} f_x(z-y) f_y(y) dy = \int_{-\infty}^{\infty} e^{-(z-y)} U(z-y) e^{-(y)} U(y) dy$
		We note that = $U(z-y)=0$ for $z< y$ and $U(y)=0$ for $y<0$,, this means the limits of integration on y are $[0,z]$ so, for $z\geq 0$, we have $f_z(z)=\int_0^z e^{-z}dy=ze^{-z}$ and for $z<0$, we have $f_z(z)=0$
		or $f_z(z)=ze^{-z}U(z)$
		b) $z = x - y$ z ranges over entire real axis for RV's x and y . For equation 6.55 in textbook, we have: $F_z(z) = \int_0^\infty \int_0^{z+y} f_{xy}(x, y) dx dy$, for $z \ge 0$ and $F_z(z) = \int_{-z}^\infty \int_0^{z+y} f_{xy}(x, y) dx dy$, for $z < 0$
		Differentiation gives: $f_z(z) = \int_0^\infty f_{xy}(z+y,y)dy$, for $z \ge 0$ and $f_z(z) = \int_{-\infty}^\infty f_{xy}(z+y,y)dy$, for $z < 0$ $f_z(z) = \int_0^{-\infty} e^{-(z+y+y)}dy$, for $z \ge 0$ and $f_z(z) = \int_{-z}^\infty e^{-(z-y+y)}dy$, for $z < 0$ $f_z(z) = \frac{1}{2}e^{-z}$, for $z \ge 0$ and $f_z(z) = \frac{1}{2}e^z$, for $z < 0$ Thus $f_z(z) = \frac{1}{2}e^{- z }$, for $-\infty < z < \infty$.
		c) $z=x/y$ $F_z(z)=P(z This defines the region in the x-y plane described by$


Now, click the edit icon, this takes you to the edit page

webwork / ece_514_001_fall_2020 / ece514_hw05_fall2020 / 2 / Editor

Problem 2

<

Editing set ece514_hw05_fall2020/problem 2 in file '[TMPL]/local/ECE514/Papoulis_4ed_Chapter_6/Papoulis_4ed_Chapter_6_6.1.pg'

We need to change in the problem solution, "sum of two random variables" should be "sum of two independent random variables"

Scroll down to the Solution and type in the word "independent" in the proper place.

Problem 2

Editing set ece514_hw05_fall2020/problem 2 in file '[TMPL]/local/ECE514/Papoulis_4ed_Chapter_6/Papoulis_4ed_Chapter_0

```
Problem Techniques
               Math Objects
                          POD
                                 PGLab
                                        PGML
                                                Author Info
                                                          Report Bugs in this Problem
77 # Solution
79 Context()->texStrings;
80 BEGIN SOLUTION;
81 $PAR
82 $BBOLD SOLUTION $EBOLD
83 $PAR
84 a) Define (z = x + y). We know the pdf of the sum of two independent
  random variables is the convoluton of the pdfs of the random variables: $BR
85 \( f_z(z) = \inf_{- \in Y} f_y(y) dy = \inf_{- \in Y} f_y(y) dy = 
  86 We note that = (U(z-y) = 0) for (z < y) and (U(y) = 0) for (y < y)
  0.\), this means the limits of integration on (y) are ([0,z])$BR
87 so, for (z \ge 0), we have (f z(z) = \inf \{0\}^{z} e^{-z} dy = ze^{-z}
  \)$BR
88 and for (z < 0), we have (f z(z) = 0) $PAR
89 or \langle f z(z) = ze^{-z}U(z) \rangle $PAR
91 b) \langle z = x - y \rangle $BR
    View
          Update
                  NewVersion
                              Append
```

The next edit in part c is to capitalize Z in subscript of F ($F_Z(z)$) and in P(Z <= z), also, would like to change all < signs to < or = signs

So scroll down to the proper place and make changes by simple delete and retype, or typing over selections

Original perl code

Problem 2

Editing set ece514_hw05_fall2020/problem 2 in file '[TMPL]/local/ECE514/Papoulis_4ed_Chapter_6/Papoulis_4ed_Chapter_6_6.1.pg'

Prol	blem Techniques Math Objects POD PGLab PGML Author Info Report Bugs in this Proble	m						
99		^						
100	c) $\langle z = x/y \rangle$ \$BR							
101	$(F_z(z) = P(z \le z) = P(x/y \le z) = P(x \le yz))$ for $(z \ge 0) $							
102	This defines the region in the x-y plane described by \$BR							
103	\$PAR							
104	\{ image("Papoulis 6 6-1 fig.png" , width=>300, height=>300,) \}							
105	\$PAR							
106	and the integral, $\langle F_z(z) = \langle int_{-} \rangle \langle infty \rangle \langle int_{0}^{zy} \rangle$							
	e^{-x}U(x)e^{-y}U(y) dx dy \) \$BR							
107	$(= \inf \{y=0\}^{ (y=0)} \in \{-y\} \in \{x=0\}^{ (y)} e^{-x} dx dy) $							
108	$(= \inf \{y=0\}^{ infty } e^{-y} [-e^{-x}] 0^{zy}]dy = \inf \{y=0\}^{ infty }$							
	} e^{-y} [1 -e^{-zy}]dy \) \$BR							
109	$(= \inf {y=0}^{ (infty) e^{-y}dy - int {y=0}^{ (infty) e^{(1-z)y}dy = - }$							
	e^{-y} 0^{\infty} + \frac{1}{1+z}e^{-(1+z)y} 0^{\infty} \) \$BR							
110	$(= -0 + 1 + frac\{1\}\{1+z\}[0-1] = (1 - frac\{1\}\{1+z\})U(z))$							
111	now, we differentiate to find the pdf \$BR							
112	$(f_z(z) = \frac{d}{dz} F_z(z) = \frac{d}{dz} (1 - \frac{1}{1+z})U(z) $ \$BR							
	$(f z(z) = \frac{1}{(1+z)^2}U(z)) $ \$BR							
114								
115	\$PAR							
110		~						

Edited Perl code

	olem Techniques Math Objects POD PGLab PGML Author Info Report Bugs in this Proble	m					
99		,					
100	c) $\langle z = x/y \rangle$ \$BR						
101	$\langle F_{Z}(z) = P(Z geq z) = P(x/y geq z) = P(x geq yz) \rangle$ for $\langle z geq z \rangle$						
	0\) \$BR						
	This defines the region in the x-y plane described by BR						
	\$PAR						
	$\{ image("Papoulis_6_6-1_fig.png", width=>300, height=>300,) \}$						
	\$PAR						
106	and the integral, $\langle F_Z(z) = \inf_{- \inf y^{ (1 - infty)^{ (1 - infty)^{ (2 - infty)^{ (1$						
	$e^{-x}U(x)e^{-y}U(y) dx dy $ \$BR						
	07 \(=\int_{y=0}^{ \infty } e^{-y} \int_{x=0}^{zy} e^{-x} dx dy \) \$BR						
108	$(= \sum_{y=0}^{ y=0}^{ y=0} \{ infty \} e^{-y} [-e^{-x} _0^{y=0}] dy = int_{y=0}^{ y=0}^{ (infty)}$						
100	<pre>} e^{-y} [1 -e^{-zy}]dy \) \$BR</pre>						
109	$ \int (= \int \{y=0\}^{(1-z)} + \int \{$						
110	e^{-y} _0^{\infty} + \frac{1}{1+z}e^{-(1+z)y} _0^{\infty} \) \$BR 0 \(= -0 +1 +\frac{1}{1+z}[0-1] = (1 - \frac{1}{1+z})U(z) \)\$BR						
	now, we differentiate to find the pdf BR						
	$\langle f z(z) = \frac{d}{dz} F Z(z) = \frac{d}{dz} \langle dz \rangle (1 - \frac{1}{1+z})U(z) \rangle$						
	$(1 = (2)^{-1} + (1 = (2)^{-1})^{-1} + (1 = (2)^{-1} + (1 = (2)^{-1})^{-1} + (1 = (2)^{-1} + (1 = (2)^{-1})^{-1} + (1 = (2)^{-1} + (1 = (2)^{-1})^{-1} + (1 = (2)^{-1} + (1 = (2)^{-1})^{-1} + (1 = (2)^{-1} + (1 = (2)^{-1})^{-1} + (1 = (2)^{-1} + (1 = (2)^{-1})^{-1} + (1 = (2)^{-1} + (1 = (2)^{-1})^{-1} + (1 = (2)^{-1} + (1 = (2)^{-1})^{-1} + (1 = (2)^{-1} + (1 = (2)^{-1})^{-1} + (1 = (2)^{-1} + (1 = (2)^{-1})^{-1} + (1 = (2)^{-1} + (1 = (2)^{-1})^{-1} + (1 = (2)^{-1})^{-1} + (1 = (2)^{-1} + (1 = (2)^{-1})^{-1} + (1 = (2)^{-1})^{-1} + (1 = (2)^{-1} + (1 = (2)^{-1})^{$						
114							
	Anth	`					
	View Update NewVersion Append						
	Using what seed?: 1318						
	Using what display mode?: MathJax 🗸						

We are ready to save the edits. Click on the "Update" tab and then click "Take Action"

This will display the updated problem in a new tab. Since the edits were in the solution, we need to click on "Solution:" to expose the edited solution

c) $z=rac{x}{y}$, $f_{z}(z)=$	U(z) help (numbers)	
d) $z=min(x,y)$, $f_z(z)=$	U(z) help (numbers)	
e) $z=max(x,y),f_z(z)=$	U(z) help (numbers)	
f) $z=rac{min(x,y)}{max(x,y)},$ $f_z(z)=$	for $\leq z \leq$	help (numbers)

Solution:

(Instructor solution preview: show the student solution after due date.)

SOLUTION

a) Define z = x + y. We know the pdf of the sum of two independent random variables is the convoluton of the pdfs of the random variables:

$$\begin{split} f_z(z) &= \int_{-\infty}^{\infty} f_x(z-y) f_y(y) dy = \int_{-\infty}^{\infty} e^{-(z-y)} U(z-y) e^{-(y)} U(y) dy \\ \text{We note that} &= U(z-y) = 0 \text{ for } z < y \text{ and } U(y) = 0 \text{ for } y < 0 \text{, this means the limits of integration on } y \text{ are } [0,z] \\ \text{so, for } z &\geq 0 \text{, we have } f_z(z) = \int_0^z e^{-z} dy = z e^{-z} \\ \text{and for } z < 0 \text{, we have } f_z(z) = 0 \\ \text{or } f_z(z) = z e^{-z} U(z) \end{split}$$

And

c)
$$z = x/y$$

 $F_Z(z) = P(Z \ge z) = P(x/y \ge z) = P(x \ge yz)$ for $z \ge 0$
This defines the region in the x-y plane described by

$$\int_{y=0}^{y} \int_{y=0}^{y} f_{x=0}^{zy} e^{-x} dx dy$$

$$= \int_{y=0}^{\infty} e^{-y} \int_{x=0}^{zy} e^{-x} dx dy$$

$$= \int_{y=0}^{\infty} e^{-y} (-e^{-x}|_0^{zy}) dy = \int_{y=0}^{\infty} e^{-y} [1 - e^{-zy}] dy$$

$$= \int_{y=0}^{\infty} e^{-y} dy - \int_{y=0}^{\infty} e^{(1-z)y} dy = -e^{-y}|_0^{\infty} + \frac{1}{1+z} e^{-(1+z)y}|_0^{\infty}$$

$$= -0 + 1 + \frac{1}{1+z} [0 - 1] = (1 - \frac{1}{1+z})U(z)$$
now, we differentiate to find the pdf
 $f_z(z) = \frac{d}{dz} F_Z(z) = \frac{d}{dz} (1 - \frac{1}{1+z})U(z)$

The problem is now ready for the students. However, there is one more step that needs to be done to save to the new file to Webwork archives. Go back to the Webwork Hmwk Sets Editor page and click the "Export" tab.

Hmwk Sets Editor

St an action to perform: Filter Sort Edit Publish Import Export Score Create Delete Show which sets?: enter matching set IDs below	
Show which sets?: enter matching set IDs below v	
Match on what? (separate multiple IDs with commas)*:	

Showing 46 out of 46 sets.

Set List								
Edit Set Data	Edit Problems	Edit Assigned Users	Visible	Open Date	Close Date	Answer Date		
Chapter 3 🖋	3	1/44	No	06/02/2014 at 01:42pm	03/02/2018 at 01:42pm	01/01/2021 at 01:42pm		
Chapter 4 🖋	10	1/44	No	06/02/2014 at 01:42pm	03/02/2018 at 01:42pm	01/01/2021 at 01:42pm		
Chapter 5 🖋	8	1/44	No	06/02/2014 at 01:42pm	03/02/2018 at 01:42pm	01/01/2021 at 01:42pm		
Chapter 6 🖋	8	1/44	No	06/02/2014 at 01:42pm	03/02/2018 at 01:42pm	01/01/2021 at 01:42pm		
Chapter 7 🖋	1	1/44	No	06/02/2014 at 01:42pm	03/02/2018 at 01:42pm	01/01/2021 at 01:42pm		

Verify that Export which sets? Is set to visible sets. Than click "take action." This will show that Webwork is setting to export visible sets – note the green line

webwork / ece_514_001_fall_2020 / instructor tools / Hmwk Sets Editor									
Hmwk Sets Editor Results of last action performed: exporting visible sets Select an action to perform:									
	Save Export Cancel Export								
Export selected sets Take Action! Showing 46 out of 46 sets. Set List									
	Edit Set Data	Edit Problems	Edit Assigned Users						
\square	Chapter 3 🖋	3	1/44						
\square	Chapter 4 🖋	10	1/44						
	Chapter 5 🖋	8	1/44						
	Chapter 6 🔗	8	1/44						

You need to click "Take Action" one more time to complete the export operation! This updates the *.def files in the Webwork archive. Do not omit this action! You may lose your edits, not for this semester but for the next semester, if you create a new archive without completing the export. This gives

<	<pre>webwork / ece_514_001_fall_2020 / instructor tools / Hmwk Sets Editor</pre>									
	mwk Sets Ed	itor				Results of last action per 6 sets exported, 0 sets)				
	how/Hide Site Description ct an action to perform: Filter Sort Edit F	Publish Import	Export Score	Create	e Delete					
Ta	Show which sets?: enter mate Match on what? (separate mult ake Action!	•								
Showing 46 out of 46 sets. Set List										
	Edit Set Data	Edit Problems	Edit Assigned Users	Visible No	Open Date 06/02/2014 at 01:42pm	Close Date 03/02/2018 at 01:42pm	Answer Date 01/01/2021 at 01:42pm			